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A. Introduction

Acquiring high-resolution medical images is crucial for
accurate disease diagnosis. Nonetheless, many medical
imaging techniques, including computed tomography (CT),
frequently encounter challenges from low-resolution im-
ages, due to various factors such as patient motion, efforts to
reduce radiation dose, and limitations in reconstruction al-
gorithms. Thus, it is important to address these challenges
through advancement in imaging-processing techniques is
essential to enhance the effectiveness of medical imaging
modalities.

The technique of single image super-resolution (SISR),
which involves restoring a high-resolution image from its
degraded counterpart using deep-neural networks (DNN), is
being considered as a promising approach to achieve high-
resolution medical images. Previous studies have shown
that the deep-learning based super-resolution methods can
be successfully applied to medical images. For example,
studies have shown that Super-Resolution Convolutional
Neural Network (SRCNN, [2]) and many variants of Gen-
erative Adversarial Networks (GAN) based methods have
demonstrated significant improvements in chest CT [6],
brain tumor, skin cancer datasets [1]. However, these meth-
ods have limitations in that SRCNN may be too shallow to
extract fine features and GAN methods often suffer from
unstable training.

Motivated by this, We propose to use a modern state-of-
the-art SISR method based on UNet architecture to improve
chest CT dataset. A robust UNet (RUNet) architecture pro-
posed by Hu et al (2019) takes a unique approach in that
it contains ’residual’ blocks in the down path to allow the
model to learn more complex features. Moreover, the au-
thors used perceptual loss functions [5] that measure the
distance between the predicted image and the target image
in feature space (”feature-distance”).

Furthermore, we explored how different image interpo-
lation methods impact the performance of RUNet. Specif-
ically, we compared RUNet results obtained from re-
sized low-resolution images using bi-linear versus nearest-
neighbor interpolation methods. Our findings indicate that
the RUNet architecture significantly enhances the visual

quality of medical images.

B. Methods
B.1. Experimental Design

Figure 1. Overview of experimental design for the testing phase.

Figure 1 shows the experimental design with a publicly
available chest CT scan dataset (see B.2.2 Dataset Prepa-
ration for more details). First, low-resolution images were
generated by scaling the original images by 0.2 (image size:
51x51). Then the images were again up-sampled in order to
match the size with the labels. In this process, we used two
different interpolation methods, 1) bi-linear or 2) nearest-
neighbor. This was to explore whether different image inter-
polation methods have any impact on the model’s outcome.
Thus, the size of the resulting high-resolution image was the
same size as that of the original test image (256x256). This
allowed us to assess whether the resulting high-resolution
images were correctly restored or not, in comparison with
the original images.

We also used another UNet-based stable diffusion model
to restore the medical images to explore which model per-
forms better at restoring medical image details.

Finally, the image restoration quality of the predicted



high-resolution images was quantified by measuring two
image quality metrics with the original images: peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM).

The main methodologies employed in this study are Ro-
bust UNet and SR3 (Super-Resolution via Repeated Re-
finement). Each methodology utilizes a variety of differ-
ent techniques such as nearest neighbor interpolation, im-
age down-sampling, and diffusion process to produce an
experimental dataset. The detailed implementation of the
methods employed in this study can be found in our group
GitHub repository (https://github.com/euijae/
nyu_computer_vision_project).

B.2. Robust UNet

B.2.1 Model Architecture

Recent research introduced Robust UNet (RUNet) architec-
ture which is a UNet-based super-resolution method [4].
One of the most significant features that differentiates be-
tween RUNet and UNet is a residual-blocks which allows
the model to learn more complex features.

B.2.2 Dataset Preparation

In this study, we used Chest CT-Scan images Dataset
that were publicly available on Kaggle (https://
www.kaggle.com/datasets/mohamedhanyyy/
chest-ctscan-images).The dataset contained 586
and 315 images for training and test respectively that are
categorized into one of four types: three different types of
cancer (Adenocarcinoma, Large cell carcinoma, and Squa-
mous cell carcinoma) or normal.

• Baseline: The dimension of images in the dataset is
inconsistent. We reshaped all images to 256 by 256 by
cropping at the center.

• Adjusted Baseline: This is an augmented dataset. We
first apply the same effect as the baseline step and then
rotate all images by 20 degrees.

• Low-Resolution: It’s obtained by reshaping baseline
images to 128 by 128 first and then expanding re-
shaped dimensions with a scale factor of 2. It ends
up with a size of 256 by 256.

• Low-Resolution with Nearest Neighbor Interpola-
tion: The Low-Resolution step produces an image of
size 128 by 128. Then we expand low-resolution im-
ages to 256 by 256 using Nearest Neighbor interpola-
tion.

B.3. Stable Diffusion Model

Our approach, SR3 (Super-Resolution via Repeated Re-
finement), is a new method for conditional image genera-
tion. Inspired by Denoising Diffusion Probabilistic Models

(DDPM) [3], SR3 transforms a standard normal distribu-
tion into an empirical data distribution through a sequence
of refinement steps, resembling Langevin dynamics.

B.3.1 Model Architecture

The SR3 model is built with a U-Net architecture, adapted
to image super-resolution. The key component is a denois-
ing objective which iteratively removes various levels of
noise from an image. The model utilizes a U-Net-based
architecture with self-attention mechanisms. This architec-
ture has been modified to handle the conditional generation
tasks effectively

B.3.2 Dataset Preparation

• Low-Resolution Images (LR): Denoted as lr 64,
these images form the initial input for the SR3 model.

• High-Resolution Images (HR): Referred to as
hr 512, these images serve as the target for super-
resolution.

• Preprocessing Steps: Images are resized and con-
verted to fit the model’s input and output requirements.

B.3.3 Process Steps

Denoising Process: The forward Markovian diffusion pro-
cess is at the core of the model, gradually corrupting the
data distribution, starting from the original data distribution
q(y0) to a known noise distribution over a predefined num-
ber of steps T . The process is defined as:

q(y1 : T |y0) =
T∏

t=1

q(yt|yt−1), (1)

where each transition probability q(yt|yt−1) is modeled
as a Gaussian distribution:

q(yt|yt−1) = N (yt;
√

1− βtyt−1, βtI), (2)

and {βt}Tt=1 represents a variance schedule of the added
noise.

Reverse Process: The reverse process aims to learn a
parameterized model pθ(yt−1|yt) to reverse the diffusion
process. It’s modeled as a denoising step where the noise
is predicted and then subtracted from the noisy image. The
objective function for the model parameter θ is the expected
L2 norm between the real and predicted noise:

L(θ) = Et,y0,ϵ[∥ϵ− ϵθ(yt, t)∥22], (3)

where ϵ ∼ N (0, I) and yt is the noisy image at time step
t.

https://github.com/euijae/nyu_computer_vision_project
https://github.com/euijae/nyu_computer_vision_project
https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images
https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images
https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images


Training and Inference: During training, the model
learns the denoising function over various noise levels. This
is achieved by randomly sampling different time steps and
applying the corresponding noise level. Inference involves
iteratively applying the reverse process starting from a noise
sample, gradually denoising it to obtain the super-resolved
image.

Super-Resolution Process: Super-resolution is treated
as a conditional generation task, where the low-resolution
image is used as a condition. The process involves upscal-
ing the low-resolution image using bicubic interpolation,
which is then fed into the model along with noise to gen-
erate a high-resolution output. The model refines details
iteratively to achieve super-resolution:

ŷ0 =
√
αtyt +

√
1− αtϵθ(yt, t), (4)

where αt =
∏t

s=1(1− βs).

Cascading for High-Resolution: For very high-
resolution image generation, SR3 models can be cascaded.
This involves using multiple SR3 models in sequence, each
progressively enhancing the resolution. This cascading
approach enables efficient, scalable super-resolution while
maintaining image fidelity.

These methods collectively represent a novel approach
in the field of super-resolution, effectively leveraging de-
noising diffusion processes to produce high-quality images
from low-resolution inputs.

C. Results
C.1. Robust UNet Model

C.1.1 Visual Examples

Figure 2 illustrates an example of the resulting high-
resolution images of the chest CT dataset obtained using
RUNet. Visual assessment confirmed that the RUNet re-
stored some of the fine details that were missing in the low-
resolution images. In particular, it seems that RUNet show a
better performance for some parts of the images, especially
around the edges of the chest consisting of bones, skins,
and fat. Moreover, RUNet with bi-linear seems to recon-
struct images more similar to the original image compared
to the model with nearest-neighbor condition. Compared to
the original labels, specifically, the images from the nearest-
neighbor condition seem to have lower contrast and less de-
tails in the central part of the chest.

C.1.2 Comparison of image quality

We Also quantified the model performances using two dif-
ferent image similarity metrics: peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM).

Figure 2. Example data of the original image, low-resolution im-
age, and model outputs. Each row indicates different chest im-
ages. The model outputs are reconstructed high-resolution images
using RUNet and RUNet and nearest-neighbor interpolation, re-
spectively.

Figure 3. Comparison of the SSIM between baseline, RUNet con-
dition, and NN+RUNet condition. The PSNR was calculated using
all the images in the test dataset and averaged for each condition.
Error bar indicates 68% confidential interval calculated using the
bootstraps.

Figure 3 shows SSIM comparisons whereas figure 4
shows PSNR values. We first noticed that even for the
baseline condition, which represents similarity between the
low-resolution images and original images, are compara-
tively high, given that the low-resolution images were in-
tentionally degraded using size rescaling. This may be
due to the particular image characteristics of anatomical
structure. For example, the center and the surround of the



Figure 4. Comparison of the PSNR between baseline, RUNet con-
dition, and NN+RUNet condition.

chest CT images will have the same contrast across all im-
ages, which will be likely to be remained after size rescal-
ing. However, the RUNet model still performed superior to
the baseline, showing a slight increase in all of the image
metrics. This indicates that the model was able to restore
some of the fine details that were lost in the low-resolution
images. Both SSIM and PSNR metrics from the condi-
tion with nearest-neighbor interpolation method showed de-
creased values compared to the baseline condition. This
may be due to the lower contrast of the images that was
observed in the visual examples.

C.2. Stable Diffusion Model

Our primary dataset comprised Chest CT-Scan images,
delineating various types of chest cancer, including Adeno-
carcinoma, Large Cell Carcinoma, Squamous Cell Carci-
noma, and normal cells. The dataset was curated with an
aim to assist in chest cancer detection using machine learn-
ing and deep learning techniques. The images were sourced
from multiple datasets to create a comprehensive collection
conducive for training a CNN model.

Preprocessing: The CT-Scan images, originally in di-
verse formats, were transformed into a uniform jpg/png for-
mat suitable for model processing. We divided the dataset
into training (80%), and validation (20%) sets.

To fit the model requirements and facilitate efficient data
handling, we applied a script for resizing images into three
distinct sets:

• Low Resolution (LR) - Downsampled images simulat-
ing lower quality inputs.

• High Resolution (HR) - Original image quality main-
tained for reference.

• Super Resolution (SR) - Upscaled from LR, aiming to
reconstruct HR-like quality.

This resizing process was crucial in preparing the data for
subsequent super-resolution tasks.

C.2.1 Training Configuration

The model’s training was configured as follows:

• Dataset: The training utilized the CT-Scan dataset for
high-resolution images and the processed CT dataset
for LR images.

• Model Architecture: A UNet architecture with mul-
tiple channel multipliers and attention mechanisms.

• Optimizer: Adam optimizer with a learning rate of
3× 10−6.

• Iterations: Training for 840,000 iterations with
checkpoints and validation frequencies set at every
10,000 iterations.

C.2.2 Model Evaluation

Model evaluation was performed on the preprocessed CT-
scan dataset. The performance metrics included:

• PSNR: Peak Signal-to-Noise Ratio, evaluating the re-
construction quality.

• SSIM: Structural Similarity Index, assessing per-
ceived image quality.

The final average PSNR and SSIM values for the SR3
model were recorded as 15.234 and 0.17228, respectively.

C.2.3 Comparative Analysis

A comparative analysis of the SR3 model and Runet was
conducted based on the metrics PSNR and SSIM. The re-
sults are presented in the following table:

Model Average PSNR Average SSIM
SR3 Model 15.23 0.17
Runet 27.79 0.87

Table 1. Comparative performance of SR3 Model and Runet

C.2.4 Result Visualization

Figure 5 presents a visual comparison of HR, inferred LR,
and generated SR images for selected samples, showcasing
the model’s enhancement capabilities.

D. Discussion

We applied two state-of-the-art UNet-based models to
reconstruct high-resolution chest CT scan images. The



Figure 5. Comparison of HR, LR, and SR images from the dataset,
illustrating the enhancement performance of the SR3 model.

RUNet and stable diffusion model successfully recon-
structed some of the fine details from the low-resolution in-
puts. The experiment indicates that the UNet-based super-
resolution models can be generalized to medical image syn-
thesis with promising results, implying that the model can
have practical applications in more accurate disease diagno-
sis.

D.1. Model comparison: RUNet vs. SR3

Our SR3 model achieved an average SSIM of 0.177 and
PSNR of 15.2334, which are lower compared to the Runet
model’s SSIM of 0.87 and PSNR of 27.5. Several factors
contribute to these differences:

• Nature of the SR3 Model: The SR3 model, based
on a diffusion framework and iterative refinement, fo-
cuses on generating high-quality, perceptually con-
vincing images rather than achieving pixel-perfect ac-
curacy. This approach often results in lower PSNR and
SSIM scores, as these metrics favor models like Runet
that prioritize exact pixel alignment with the target im-
age.

• Trade-off between Perceptual Quality and Metric
Accuracy: As observed in previous studies, conven-
tional metrics like PSNR and SSIM do not always cor-
relate well with human perception, especially for mod-
els generating high-frequency details. SR3, with its it-
erative refinement process, introduces such details but

may not align perfectly with the target image, leading
to lower metric scores.

• Consistency with Low-Resolution Inputs: While
SR3 shows strong performance in maintaining consis-
tency with low-resolution inputs, this consistency does
not necessarily translate to higher PSNR and SSIM
values. SR3’s methodology, which does not rely on
MSE regression, tends to generate outputs that are
more diverse and visually appealing but may diverge
slightly from the original high-resolution target, affect-
ing these scores.

• Model Capacity and Architecture: The architec-
ture and capacity of SR3, designed for balancing de-
tail generation and consistency, might inherently lead
to lower PSNR and SSIM scores compared to Runet,
which may have an architecture optimized for these
metrics.

• Training Data and Objectives: The training objec-
tives and data used for SR3 emphasize perceptual qual-
ity over metric optimization. In contrast, models like
Runet, which are trained with a direct focus on reduc-
ing pixel-level errors, achieve higher PSNR and SSIM
values.

D.2. Implications

These results were particularly evident in images where
the model was able to maintain high levels of detail and tex-
ture fidelity, contributing to higher PSNR and SSIM scores.
This observation indicates that while the average perfor-
mance across a broad dataset may show lower metric scores
for SR3, there are instances where the model’s performance
is highly competitive. Our findings reaffirm the limitations
of conventional reference-based metrics in super-resolution.
High PSNR and SSIM scores, as seen with the Runet model,
do not always imply superior perceptual quality. The SR3
model’s lower scores on these metrics highlight the trade-
off between generating perceptually realistic images and
achieving metric-based accuracy. This observation under-
scores the need for more comprehensive evaluation metrics
that can better capture human perception of image quality
in super-resolution tasks.

D.3. Notable Performance on Selected Images

Despite the overall lower PSNR and SSIM scores of
SR3, it is important to highlight that the model achieved
a fairly good performance on certain images. Notably, the
top-ranking images in terms of PSNR and SSIM demon-
strated a closer parity with the performance of the RUnet
model. These results suggest that in specific cases, the SR3
model has potentials comparable to traditionally metric-
optimized models like RUnet.



• Top-Performing Images:

1. Rank 1: PSNR: 24.705, SSIM: 0.62192; suggest-
ing near parity with Runet in certain scenarios.

2. Rank 2: PSNR: 24.138, SSIM: 0.68346; indicat-
ing the model’s capability to achieve high-quality
super-resolution.

3. Rank 3: PSNR: 24.020, SSIM: 0.52956; show-
casing the model’s strength in certain challenging
conditions.

These results were particularly evident in images where
the model was able to maintain high levels of detail and tex-
ture fidelity, contributing to higher PSNR and SSIM scores.
This observation indicates that while the average perfor-
mance across a broad dataset may show lower metric scores
for SR3, there are instances where the model’s performance
is highly competitive.

The performance of SR3 on these top-ranking images
underscores the complexity of image super-resolution as
a task. While average metric scores provide a useful
overview, they may not fully capture the nuanced perfor-
mance of models across different images and conditions.
This further emphasizes the need for a more nuanced eval-
uation approach, taking into account both average perfor-
mance and the ability to excel in specific scenarios.
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